An Introduction to Mathematical Cryptography Jeffrey Hoffstein, Joseph H. Silverman, Jill Pipher

Proposed Solutions to the questions in the book An Introduction to Mathematical Cryptography Jeffrey Hoffstein, Joseph H. Silverman, Jill Pipher

Chapter 7 : Digital Signatures

Section 7.2. RSA digital signatures:

7.1. Samantha uses the RSA signature scheme with primes p = 541 and q = 1223 and public verification exponent v = 159853.
  1. What is Samantha’s public modulus? What is her private signing key?
    • i)Public modulus , N = pq 541*1223=661643

      N = 661643

      ii)s = private signing key

      f(N) = (p-1)*(q-1) = (541-1)*(1223-1)=659880

      vs= 1(mod(p-1)(q-1)) => 159853.s = 1(mod(540)(1222)

      = 159853.s =1(mod 659880)

7.2. Samantha uses the RSA signature scheme with public modulus N = 1562501 and public verification exponent v = 87953. Adam claims that Samantha has signed each of the documents

             D = 119812,     D' = 161153,     D'' = 586036,

and that the associated signatures are

             S = 876453,     S'= 870099,     S''= 602754.

Which of these are valid signatures?

      a) D = 119812 and S = 876453

      876453 87953MOD 1562501 = 772481

      119812 ? 772481

      b) D' = 161153 and S' = 870099

      870099 87953 MOD 1562501 = 161153

      161153 = 161153

      c) D'' = 586036 and S'' = 602754

      60275487953 MOD 1562501 = 586036

      586036 = 586036

      S' and S'' are valid signatures

No comments:

Post a Comment