Proposed Solutions to the questions in the book An Introduction to Mathematical Cryptography Jeffrey Hoffstein, Joseph H. Silverman, Jill Pipher
Chapter 7 : Digital Signatures
Section 7.2. RSA digital signatures:
7.1. Samantha uses the RSA signature scheme with primes p = 541 and q = 1223 and public verification exponent v = 159853.
- What is Samantha’s public modulus? What is her private signing key?
- i)Public modulus , N = pq 541*1223=661643
N = 661643
-
ii)s = private signing key
f(N) = (p-1)*(q-1) = (541-1)*(1223-1)=659880
vs= 1(mod(p-1)(q-1)) => 159853.s = 1(mod(540)(1222)
= 159853.s =1(mod 659880)7.2. Samantha uses the RSA signature scheme with public modulus N = 1562501 and public verification exponent v = 87953. Adam claims that Samantha has signed each of the documents
D = 119812, D' = 161153, D'' = 586036,
and that the associated signatures areS = 876453, S'= 870099, S''= 602754.
Which of these are valid signatures?
- a) D = 119812 and S = 876453
876453 87953MOD 1562501 = 772481
119812 ? 772481
- b) D' = 161153 and S' = 870099
870099 87953 MOD 1562501 = 161153
161153 = 161153
- c) D'' = 586036 and S'' = 602754
60275487953 MOD 1562501 = 586036
586036 = 586036S' and S'' are valid signatures
No comments:
Post a Comment